viernes, 16 de febrero de 2018

2018: el año del retorno de las naves tripuladas de Estados Unidos
por Daniel Marín



En 2011 despegó la última nave tripulada estadounidense. Desde entonces los astronautas de la NASA solo han podido acceder al espacio usando naves Soyuz rusas pagando una suma que ha aumentado paulatinamente (cada asiento a bordo de una Soyuz en 2018 le ha salido a la NASA por 82 millones de dólares). Pero este año todo debe cambiar. Si la NASA se sale con la suya en 2018 despegarán por primera vez las dos naves que deben devolver a Estados Unidos la autonomía para llevar sus astronautas a la Estación Espacial Internacional (ISS): la CST-100 Starliner de Boeing y la Dragon 2 de SpaceX. Por fin, después de varios años de retrasos sus primeras misiones están previstas para agosto de este año.


Dragon 2 (izquierda) y CST-100 Starliner (NASA).

Boeing está construyendo un total de tres cápsulas Starliner —denominadas de forma muy original como Spacecraft 1, 2 y 3 (SC1, SC2 y SC3)— que serán reutilizadas después de cada misión, además de un vehículo de pruebas. La Starliner será la primera cápsula estadounidense que aterrice en tierra firme en vez de amerizar en el océano, una medida introducida para facilitar el rescate de la tripulación y facilitar la reutilización. Para ello la cápsula ha sido equipada con un sistema de airbags que amortiguarán el choque contra la superficie. Hasta finales de octubre de 2017 se habían llevado a cabo en el centro Langley de la NASA once ensayos de aterrizaje de un total de catorce previstos. El año pasado también se soltó la cápsula desde un helicóptero para comprobar el correcto funcionamiento de los airbags y los paracaídas. Por si acaso, el sistema de paracaídas fue sometido a otra prueba en la que se desplegaron a la altura correspondiente a una misión real, por lo que fue necesario elevar un modelo de la cápsula mediante un globo aerostático.


Cápsula CST-100 Starliner de Boeing (Boeing).

La Starliner durante una de las pruebas de aterrizaje en Langley (NASA).


Después de los problemas imprevistos que aparecieron el hace unos años relativos al mal comportamiento aerodinámico de la cápsula una vez integrada con el cohete Atlas V N22 (un Atlas V 412 sin cofia), Boeing decidió introducir un anillo estabilizador alrededor de la cápsula y un ‘faldón’ en la parte trasera del vehículo. Las pruebas en túneles de viento de esta configuración han sido satisfactorias. La Starliner usará un lanzador Atlas V con una segunda etapa Centaur dotada de dos motores, a diferencia de las versiones normales, que solo tienen un motor. A principios de enero de este año la Starliner pasó el DCR (Design Certification Review), un paso necesario que demuestra que la nave está lista para entrar en servicio. Las cápsulas Starliner se preparan en el edificio C3PF (Commercial Crew and Cargo Processing Facility) del Centro Espacial Kennedy. Este edificio se conocía antiguamente como OPF-3 y que antes estaba dedicado a preparar el transbordador espacial entre cada vuelo.


Montaje de la primera Starliner que viajará al espacio con los airbags ya instalados (Boeing).

El interior de la cápsula Starliner con los trajes de presión IVA (Boeing).

La rampa SLC-41 desde donde despegarán las naves Starliner ya ha sido equipada con la pasarela para la tripulación y la característica «habitación blanca» para preparar a los astronautas antes de entrar en el vehículo. También se han probado el sistema de escape de la rampa en caso de emergencia, consistente en una tirolina que permitirá evacuar a los astronautas hasta una distancia segura si surge un problema antes del despegue. No obstante, la Starliner tiene aún que superar su prueba más importante antes de la primera misión: comprobar el funcionamiento del sistema de escape, consistente en cuatro motores de 8,2 toneladas de empuje en total situados en el módulo de servicio. Estos motores funcionarán también como sistema de propulsión una vez en órbita. Esta prueba, denominada PAT (Pad Abort Test), tendrá lugar en las instalaciones de la NASA en White Sands (Nuevo México).


Pasarela de acceso a la cápsula para la rampa SLC-41 (Boeing).


Sistema de escape de emergencia de la rampa de la Starliner (Boeing).


Cohete y rampa de lanzamiento de la Starliner (Boeing).

La primera misión no tripulada de la Starliner, la Boe-OFT (Boeing Orbital Flight Test) está prevista para finales de agosto y tendrá una duración de dos semanas durante las cuales se probarán todos los sistemas de la nave (este vuelo será también la misión AV-080 del Atlas V). La cápsula se acoplará automáticamente al PMA-2 del módulo Harmony de la estación espacial y la tripulación de la ISS inspeccionará su interior. La primera misión tripulada, Boe-CFT (Boeing Crewed Flight Test), tendrá lugar oficialmente en noviembre de 2018 antes del primer vuelo con astronautas de la Dragon 2 de SpaceX y también se alargará durante dos semanas. No obstante, es vox populi que las primeras misiones tripuladas de los dos vehículos no van a tener lugar antes del 31 de diciembre de 2018. En cualquier caso estas fechas son —muy— provisionales y dependerán del comportamiento de las naves en los vuelos de certificación anteriores.


Vehículo de prueba Structural Test Article (STA) de la Starliner (Boeing).


Configuración de lanzamiento de la Starliner con el faldón aerodinámico (Boeing).


La primera misión regular a la ISS será la CTS-1 y debe despegar en mayo de 2019. La nave permanecerá acoplada a la estación hasta noviembre y llevará dos o cuatro astronautas. Por si acaso la Starliner y la Dragon 2 no están listas para el año que viene la NASA ya ha encargado a Roscosmos asientos para sus astronautas en dos naves Soyuz adicionales. Si no lo hubiera hecho se arriesga a quedarse sin astronautas en la estación espacial, un escenario lógicamente inaceptable. Por el momento, y al igual que la Dragon 2, la Starliner llevará un máximo de cuatro tripulantes en sus misiones a la ISS, aunque ha sido diseñada para transportar hasta siete personas.


Interior del edificio C3PF donde se están montando las tres Starliner (Boeing).

CST-100 Starliner (Boeing).

En cuanto a SpaceX, el desarrollo de la Dragon 2 (Dragon V2) continúa a buen ritmo, aunque los detalles disponibles son mucho más escasos que en el caso de la Starliner. En 2015 SpaceX ya realizó la prueba PAT del sistema de escape, una prueba que presentó varios problemas y riesgos potenciales que no gustaron nada a la NASA. Se supone que desde entonces la empresa de Elon Musk ya ha corregido los posibles fallos del sistema, formado por cuatro propulsores Super Draco a base de combustibles hipergólicos. El hecho de que este sistema de emergencia use combustibles tóxicos y rodee la cápsula en vez de estar situado por encima (Soyuz) o por debajo (Starliner) del compartimento de la tripulación ha sido una de las principales fuentes de conflicto entre SpaceX y la NASA en materia de seguridad. A pesar de las presiones de SpaceX, la agencia espacial se negó en redondo a que la Dragon 2 usase este sistema para llevar a cabo aterrizajes propulsados, lo que ha forzado a SpaceX a abandonar la posibilidad de aterrizar mediante retropropulsión en un futuro cercano (y, de paso, ha provocado la cancelación del proyecto de nave marciana no tripulado Red Dragon). En abril de este año tendrá lugar una nueva prueba del sistema de escape en vuelo, IFA (In-Flight Abort).


Nave Dragon 2 tripulada en construcción (NASA).


La Dragon 2 durante la prueba del sistema de escape en 2015 (SpaceX).

Por este motivo durante 2017 SpaceX ha tenido que comprobar nuevamente el sistema de paracaídas de forma intensiva (a finales del año pasado ya llevaba ocho ensayos). Además se han realizado pruebas específicas del sistema de propulsión del Falcon 9 (los motores Merlin 1D y MVac Full Thrust) para comprobar que son aptos de cara a vuelos tripulados. También se ha estudiado la seguridad de la nueva versión del Falcon 9, la Block 5, que debe volar por primera vez este febrero. El año pasado SpaceX presentó el traje de presión que llevarán los astronautas de la Dragon 2, aunque prácticamente no dio ningún detalle técnico del mismo. No obstante, SpaceX realizó con éxito una prueba de la tripulación dentro de la cápsula con las escafandras puestas.


Nave tripulada Dragon V2 de SpaceX con su escafandra (SpaceX).

Prueba del sistema de paracaídas de la Dragon 2 en el lago seco Delamar (NASA).


Al igual que Boeing, SpaceX está construyendo tres cápsulas Dragon 2 —y un vehículo de prueba (Qualification Module)— para las primeras tres misiones. Estas cápsulas serán reutilizadas posteriormente, aunque no está claro si planea construir alguna más. Ahora que ya sabemos que la Dragon 2 amerizará en el océano en todas sus misiones en vez de aterrizar sobre tierra firme, la NASA ha insistido en los entrenamientos de rescate de la tripulación en alta mar, para lo cual ya se ha fabricado un modelo de la nave destinado a este fin.


Compartimento presurizado de la Dragon 2 y su escudo térmico (SpaceX).


Maqueta de la Dragon para pruebas de rescate en el océano.

La Dragon 2 despegará desde la rampa 39A del Centro Espacial Kennedy mediante un Falcon 9 Block 5. La rampa está lista, aunque SpaceX debe instalar en las próximas semanas la pasarela de acceso para la tripulación. La primera misión de la Dragon 2, no tripulada, será la Demo 1 (SpX Demo-1) y está prevista para agosto. Al igual que el vuelo inaugural de la Starliner se probarán los sistemas de la nave durante dos semanas y se acoplará al puerto PMA-2 de la ISS. Oficialmente la primera misión tripulada, Demo 2, será en diciembre de este año después del primer vuelo tripulado de la Starliner, pero ya hemos comentado que lo más probable es que se retrase a 2019 y es muy posible que SpaceX adelante a Boeing en la carrera por poner una persona en el espacio. La misión Demo 2 durará dos semanas y llevará dos astronautas, mientras que la primera misión operativa, Crew-1, transportará entre dos y cuatro tripulantes, permaneciendo acoplada a la ISS entre abril y junio de 2019.


Pasarela de acceso de la tripulación en la rampa 39A (todavía no instalada).

Sin embargo, el principal problema al que debe hacer frente la Dragon 2 de SpaceX es la seguridad. En un reciente informe del ASAP (Aerospace Safety Advisory Panel) encargado por el Congreso de los EEUU se señalan los riesgos que presenta la segunda etapa del Falcon 9 para los vuelos tripulados. En 2016 el Falcon 9 F9-29 explotó en la rampa por un defecto en uno de los tanques de helio, denominados COPV (Composite Overwrap Pressure Vessel), usados para presurizar los tanques de propelentes. Ni que decir tiene, el fallo hizo saltar todas las alarmas en la NASA. SpaceX ha trabajado en una nueva versión de los COPV para la segunda etapa, pero por lo que se ve la NASA no está del todo convencida. Otro punto preocupante que apunta el panel ASAP es el plan de SpaceX de cargar el cohete con oxígeno líquido a muy baja temperatura —para aumentar la densidad del mismo— con la tripulación dentro de la nave. El panel considera que se trata de una práctica de alto riesgo que, junto con las incógnitas de los tanques de helio, podrían justificar retrasar la certificación de la Dragon 2 para vuelos tripulados hasta más allá de 2019 si es necesario, siempre y cuando Boeing ponga en servicio la Starliner y permita el acceso al espacio de astronautas de EEUU.

Así que hagan sus apuestas. ¿Quién volará primero?¿Boeing o SpaceX? Y lo más importante, ¿cuál de las dos empresas llevará antes astronautas?



Fuente:  danielmarin.naukas.com

No hay comentarios:

Publicar un comentario