domingo, 1 de diciembre de 2019

Usando propulsión nuclear para viajar a Marte desde la estación Gateway
Por Daniel Marín



Aunque la Luna es el destino oficial para la NASA a corto y medio plazo, Marte sigue siendo su objetivo final. Los últimos planes concebidos para alcanzar el planeta rojo hacen uso de la estación lunar Gateway y el sistema SLS/Orión, pero, debido a las limitaciones de carga del cohete SLS, se requieren múltiples lanzamientos de este lanzador para llegar a Marte. Una solución es apostar por sistemas de propulsión más eficientes que la propulsión química tradicional. Después de la propulsión iónica o de plasma, el siguiente tipo de propulsión más popular es la propulsión nuclear térmica (NTP), a pesar de que nunca se ha probado en el espacio. Este sistema consiste en hacer pasar un fluido —normalmente hidrógeno o metano— alrededor o a través de un reactor nuclear para que las altas temperaturas del mismo eleven su temperatura y se alcance una alta velocidad de escape y, por consiguiente, una alta eficiencia (o, mejor dicho, impulso específico, Isp).


Nave marciana tripulada con propulsión nuclear (NASA).

El uso de NTP en un viaje marciano supondría una ventaja considerable, aunque no se trata de un sistema de propulsión mágica como algunos creen. Pero veámoslo con cifras concretas. El viaje de ida o vuelta a Marte usando propulsión química viene dado por el tiempo que tarda una nave en recorrer una trayectoria de Hohmann, que es la órbita que menos Delta-V requiere. Este tiempo depende de la ventana de lanzamiento concreta, pero suele ser del orden de 200-300 días para una misión de tipo conjunción, que lleva asociada una estancia en la órbita o superficie de Marte de unos 500-600 días. El uso de NTP permitirá, para una misma carga útil, reducir el tiempo de vuelo a unos 120-160 días, o sea casi la mitad (el tiempo exacto depende de las características precisas del motor). No obstante, las arquitecturas con NTP suelen preferir sacrificar parcialmente la ventaja en la reducción de tiempo para poder llevar algo más de carga hasta el planeta rojo.


La NTP permite reducir el tiempo de vuelo a Marte (NASA/Aerojet Rocketdyne).


Detalle de la nave marciana tripulada con propulsión nuclear (NASA/Aerojet Rocketdyne).

Desde 2016 la empresa Aerojet Rocketdyne, famosa por sus motores para lanzadores espaciales, y la NASA ha propuesto una arquitectura para llegar a Marte en 160 días usando NTP. La nave tripulada estaría formada por cinco elementos: un hábitat para la tripulación, un módulo propulsor NTP con tres motores nucleares de nueva generación y tres tanques de propelente (hidrógeno líquido). Los cinco elementos tendrían todos una masa de unas 44 toneladas y serían lanzados mediante un SLS Block 2 (una futura versión del SLS que no se sabe cuándo entrará en servicio). Las cinco piezas de la nave marciana despegarían sin tripulación con una separación de 180 días entre cada misión y se ensamblarían en la estación Gateway, situada en una órbita NRHO alrededor de la Luna. Por eso cada elemento contaría con su propio sistema de propulsión hipergólico y paneles solares para dirigirse hacia la Luna. Los tanques de propelente emplearían un sistema de refrigeración activo para mantener las temperaturas criogénicas y evitar que el hidrógeno se evapore.


Detalle de la nave marciana y sus elementos (NASA).

Una vez la nave marciana esté ensamblada, una nave Orión tripulada con destino a Gateway se encargaría de comprobar el estado del vehículo y rellenar el hábitat con más víveres y equipo. Luego la nave marciana volvería sin tripulación hasta una órbita lunar más alejada en una maniobra de 180 días y allí se encontraría con otra nave Orión, que llevaría a la tripulación marciana y más víveres. Finalmente, el conjunto pondría rumbo al planeta rojo, donde llegarían tras 160 días de viaje. Allí permanecerían unos 600 días en órbita de Marte o viajarían a la superficie en un aterrizador que habría llegado previamente a la órbita marciana usando otra etapa nuclear de 54 toneladas y un único motor nuclear. En este caso, el aterrizador llegaría a Marte tras un vuelo de baja energía de 200 a 300 días de duración.


Secuencia de ensamblado de la nave marciana en la estación Gateway (NASA).

Regreso a la órbita lunar alejada, abordaje de la tripulación y viaje a Marte (NASA).


Envío del aterrizador marciano sin tripulación con dos lanzamientos del SLS y una etapa nuclear (NASA).

Este esquema de misión es poco espectacular en tanto en cuanto requiere más o menos el mismo número de lanzamientos del SLS para llegar a la superficie de Marte que la propulsión química (entre 5 y 7), pero bien es cierto que se reduce significativamente el tiempo de viaje y, por tanto, la exposición a la radiación solar y cósmica por parte de los astronautas. Una misión a Marte con NTP podría durar en total 540 días solamente, incluyendo 300 días de estancia en la órbita o en la superficie del planeta vecino. El uso de motores nucleares también permitiría abortar la misión durante los primeros tres meses de viaje hacia Marte, una ventaja que no tiene la propulsión química, que solo permite un aborto durante los primeros cinco días. En todo caso, es importante recordar que la NASA, ni nadie, dispone de un motor NTP operativo. Tras los experimentos de los años 60 y 70 en EEUU y la URSS, ningún país ha apostado por esta tecnología, aunque recientemente la NASA ha mostrado interés en revivir esta tecnología y ha dedicado una modesta cantidad de dinero en revisar su viabilidad (o sea, lo que viene siendo hacer powerpoints).


Motor nuclear de nueva generación comparado con un motor criogénico RL-10 (derecha) (NASA).

Esquema de otro motor nuclear (BWXT).

El motor NTP que tiene en mente la NASA sería un descendiente de los programas NERVA/Rover, pero emplearía uranio poco enriquecido (LEU) como combustible. Tendría un empuje mínimo de 111 kilonewton y una potencia de 500 megavatios, con un impulso específico (Isp) de casi 900 segundos, que es el doble de la eficiencia que puede alcanzar un motor químico convencional. La NTP sería especialmente ventajosa para explorar el sistema solar exterior. Desgraciadamente, este tipo de propulsión goza de una mala imagen entre gran parte del público, a pesar de que los reactores de estos motores se lanzarían inertes y solo se activarían una vez en órbita terrestre o en el espacio profundo y, por tanto, no supondrían ningún riesgo desde el punto de vista de la radiación emitida.


Arquitectura NTP para llegar al sistema solar exterior (NASA).

Otra vista de la nave marciana y sus tres motores nucleares (NASA).



No hay comentarios:

Publicar un comentario